NOETHERIAN MODULES AND SHORT EXACT SEQUENCES

COMMUTATIVE ALGEBRA

Proposition. Let \(0 \to L \xrightarrow{\alpha} M \xrightarrow{\beta} N \to 0 \) be a short exact sequence of \(A \)-modules. Then,

\[
M \text{ is Noetherian } \iff L \text{ and } N \text{ are Noetherian}
\]

Proof. (\(\Rightarrow \)) Given an ascending chain of submodules \(\{L_i\}_{i=1}^{\infty} \) in \(L \), we get ascending chain of submodules \(\{\alpha(L_i)\}_{i=1}^{\infty} \) in \(M \). Since \(M \) is Noetherian, there exists a positive integer \(n \) such that \(\alpha(L_n) = \alpha(L_{n+1}) = \cdots \). Applying \(\alpha^{-1} \) to both sides

\[
\alpha^{-1}(\alpha(L_n)) = \alpha^{-1}(\alpha(L_{n+1})) = \alpha^{-1}(\alpha(L_{n+2})) = \cdots
\]

Since \(\alpha \) is injective, \(\alpha^{-1}(\alpha(L_i)) = L_i \) for each \(i \). So we obtain

\[
L_n = L_{n+1} = L_{n+2} = \cdots
\]

showing that \(L \) is Noetherian.

Similarly, given an ascending chain of submodules \(\{N_i\}_{i=1}^{\infty} \) in \(N \), we get ascending chain of submodules \(\{\beta^{-1}(L_i)\}_{i=1}^{\infty} \) in \(M \). Since \(M \) is Noetherian, there exists a positive integer \(p \) such that \(\beta^{-1}(N_p) = \beta^{-1}(N_{p+1}) = \cdots \). Applying \(\beta \) to both sides,

\[
\beta(\beta^{-1}(N_p)) = \beta(\beta^{-1}(N_{p+1})) = \beta(\beta^{-1}(N_{p+2})) = \cdots
\]

Since \(\beta \) is surjective, \(\beta(\beta^{-1}(N_i)) = N_i \) for each \(i \). So we obtain

\[
N_p = N_{p+1} = N_{p+2} = \cdots
\]

showing that \(N \) is Noetherian.

(\(\Leftarrow \)) Suppose \(\{M_i\}_{i=1}^{\infty} \) is an ascending chain of submodules of \(M \), then identifying \(\alpha(L) \) with \(L \) (which can be done, since \(\alpha \) is injective), and taking intersections, we get a chain of the form

\[
L \cap M_1 \subseteq L \cap M_2 \subseteq \cdots
\]

of submodules in \(L \). Similarly, applying \(\beta \) gives a chain

\[
\beta(M_1) \subseteq \beta(M_2) \subseteq \cdots
\]

of submodules in \(N \). Since \(L \) and \(N \) are Noetherian, each of these chains terminate. To prove that \(M \) is Noetherian, it suffices to prove the following lemma:

Lemma. For submodules, \(M_1 \subseteq M_2 \subseteq M \),

\[
\alpha(L) \cap M_1 = \alpha(L) \cap M_2 \quad \text{and} \quad \beta(M_1) = \beta(M_2) \implies M_1 = M_2
\]

Proof. Suppose \(m \in M_1 \). Then, \(\beta(m) \in \beta(M_1) = \beta(M_2) \), so that there is \(n \in M_2 \) such that \(\beta(m) = \beta(n) \). Then, \(\beta(m-n) = 0 \), so that \(m-n \in M_1 \cap \ker(\beta) = M_1 \cap \alpha(L) \). It follows that \(m-n \in M_2 \), so that \(m \in M_2 \). This shows that \(M_1 \subseteq M_2 \). Similarly, we can prove \(M_2 \subseteq M_1 \). Thus, \(M_1 = M_2 \), as desired.

\(\square \)

\(\square \)